# XIN CORE TECHNOLOGY

X32F1003xx
ARM® Cortex -M3 32-bit MCU

**Datasheet** 

# **Table of Contents**

| 1    | General description                                             | 4  |
|------|-----------------------------------------------------------------|----|
| 2    | Device overview                                                 | 5  |
| 2.1  | Device information                                              | 5  |
| 2.2  | Block diagram                                                   | 6  |
| 2.3  | Pinouts and pin assignment                                      |    |
| 2.4  | Memory map                                                      | 9  |
| 2.5  | Pin definitions                                                 | 10 |
| 3    | Functional description                                          | 14 |
| 3.1  | ARM <sup>®</sup> Cortex™-M3 core                                | 14 |
| 3.2  | On-chip memory                                                  |    |
| 3.3  | Clock, reset and supply management                              | 15 |
| 3.4  | Boot modes                                                      | 15 |
| 3.5  | Power saving modes                                              | 16 |
| 3.6  | Analog to digital converter (ADC)                               | 16 |
| 3.7  | Digital to analog converter (DAC)                               | 17 |
| 3.8  | DMA                                                             | 17 |
| 3.9  | General-purpose inputs/outputs (GPIOs)                          | 17 |
| 3.10 | Timers and PWM generation                                       | 18 |
| 3.11 | 1 Real time clock (RTC)                                         | 19 |
| 3.12 | 2 Inter-integrated circuit (I2C)                                | 19 |
| 3.13 | Serial peripheral interface (SPI)                               | 20 |
| 3.14 | Universal synchronous asynchronous receiver transmitter (USART) | 20 |
| 3.15 | 5 Universal serial bus full-speed (USB 2.0 FS)                  | 20 |
| 3.16 | 6 Controller area network (CAN)                                 | 32 |
| 3.17 | 7 Debug mode                                                    | 21 |
| 3.18 | Package and operation temperature                               | 21 |
| 4    | Electrical characteristics                                      | 22 |
| 4.1  |                                                                 |    |
| 4.2  | Recommended DC characteristics                                  |    |
| 4.3  | Power consumption                                               | 23 |
| 4.4  | External clock characteristics                                  | 24 |
| 4.5  | Internal clock characteristics                                  | 25 |
| 4.6  | PLL characteristics                                             |    |
| 4.7  | Memory characteristics                                          |    |
| 4.8  | GPIO characteristics                                            |    |
| 4.9  | ADC characteristics                                             |    |
| 4.10 |                                                                 |    |
| 4.11 |                                                                 |    |
| 4.12 | 2 SPI characteristics                                           | 27 |
| 5    | Package information                                             | 28 |
| 5.1  | LQFP package outline dimensions                                 | 28 |

6 Revision History 30

## 1 General description

The X32F1003xx device is a 32-bit general-purpose microcontroller based on the ARM<sup>®</sup> Cortex<sup>™</sup>-M3 RISC core with best ratio in terms of processing power, reduced power consumption and peripheral set. The Cortex<sup>™</sup>-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support.

The X32F1003xx device incorporates the ARM<sup>®</sup> Cortex<sup>™</sup>-M3 32-bit processor core operating at 72 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 1 MB on-chip Flash memory and up to 32 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer 12-bit ADCs, 12-bit DACs, general-purpose 16-bit timers, basic timers plus two PWM advanced-control timer, as well as standard and advanced communication interfaces: SPI, I<sup>2</sup>C, UART, USB 2.0 FS, and CAN.

The device operates from a 2.5 to 5.0 V power supply and available in -40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The above features make the X32F1003xx devices suitable for a wide range of applications, especially in areas such as industrial control, inventer, consumer and POS, vehicle GPS, toy controller and so on.

# 2 Device overview

## 2.1 Device information

Table 1. X32F1003xx devices features and peripheral list

|              | Table 1. A32F | 1000/ |     |      | F100 |     | и рол | priore |      |
|--------------|---------------|-------|-----|------|------|-----|-------|--------|------|
| P            | art Number    | T4    | Т6  | Т8   | тв   | C4  | C6    | C8     | СВ   |
|              | Flash (KB)    | 128   | 256 | 512  | 1024 | 128 | 256   | 512    | 1024 |
| 5            | SRAM (KB)     | 32    | 32  | 32   | 32   | 32  | 32    | 32     | 32   |
|              | GPTM          | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    |
|              | Advanced TM   | 1     | 1   | 1    | 1    | 1   | 1     | 1      | 1    |
| Timers       | SysTick       | 1     | 1   | 1    | 1    | 1   | 1     | 1      | 1    |
| Ē            | Watchdog      | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    |
|              | RTC           | 1     | 1   | 1    | 1    | 1   | 1     | 1      | 1    |
|              | USART         | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    |
|              | I2C           | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    |
| ctivity      | SPI           | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    |
| Connectivity | CAN 2.0B      | 1     | 1   | 1    | 1    | 1   | 1     | 1      | 1    |
|              | USB 2.0 FS    | 1     | 1   | 1    | 1    | 1   | 1     | 1      | 1    |
|              | GPIO          | 37    | 37  | 37   | 37   | 26  | 26    | 26     | 7    |
|              | DAC           | 1     | 1   | 1    | 1    | 1   | 1     | 1      | 1    |
| EXTI         |               | 16    | 16  | 16   | 16   | 16  | 16    | 16     | 16   |
| ADC          | Units         | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    |
| ۷            | Channels      | 16    | 16  | 16   | 16   | 10  | 10    | 10     | 10   |
|              | Package       |       | LQ  | FP64 |      |     | LQF   | P48    |      |

## 2.2 Block diagram

TPIU SW/JTAG POR/PDR Flash ARM Cortex-M3 Controller Processor Memory Fmax: 72MHz DCode F<sub>max</sub>: 72MHz LDO RST/CLK Control System 1.2V Maste Slave NVIC AHB Peripherals HSI AHB. GP DMA SRAM 8MHz SRAM 7chs Controller HSE EXMC AHB to APB AHB to APB 4-16MHz Bridge 2 Bridge 1 LVD Powered By VDDA USART1 CAN Slave SPI1 WDG TM2 ADC1 12-bit SAR ADC TM3 ADC2 TM4 Powered By VDD GPIOA GPIOB SPI2 **GPIOC** USART2 GPIOD USART3 12C1 (GPIOE) 12C2 ТМ EXTI USB FS

Figure 1. X32F1003xx block diagram

## 2.3 Pinouts and pin assignment

Figure 2. X32F1003Rx LQFP64 pinout




Figure 3. X32F1003Rx LQFP48 pinout

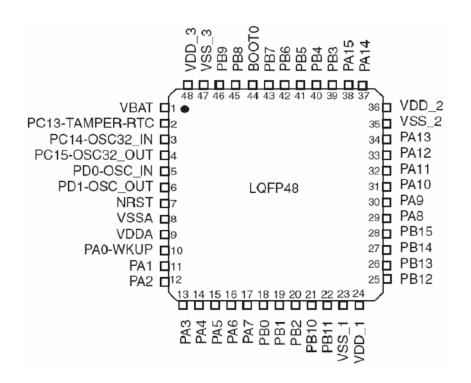



Figure 4. X32F1003xx memory map

|             |                                                    |                            |                    | — 0x 4002 4400               |                       |
|-------------|----------------------------------------------------|----------------------------|--------------------|------------------------------|-----------------------|
|             |                                                    |                            |                    | 0x 4002 4400<br>0x 4002 3000 | CRC                   |
|             |                                                    |                            |                    | 0x 4002 3400                 | reserved              |
|             |                                                    |                            |                    | 0x 4002 2000                 | Flash Interface       |
|             |                                                    |                            |                    | 0x 4002 2000<br>0x 4002 1400 | reserved              |
|             |                                                    |                            |                    | 0x 4002 1400<br>0x 4002 1000 | RCC                   |
|             |                                                    |                            |                    |                              | reserved              |
|             |                                                    |                            |                    | 0x 4002 0800                 | DMA2                  |
|             |                                                    |                            |                    | 0x 4002 0400                 | DMA1                  |
|             |                                                    |                            |                    | 0x 4002 0000                 | reserved              |
|             |                                                    |                            |                    | 0x 4001 8400                 | SDIO                  |
|             |                                                    |                            |                    | 0x 4001 8000                 | reserved              |
|             |                                                    |                            |                    | 0x 4001 5800                 | TM11                  |
|             |                                                    |                            |                    | 0x 4001 5400                 |                       |
|             |                                                    |                            |                    | 0x 4001 5000                 | TM10<br>TM9           |
|             |                                                    |                            |                    | 0x 4001 4C00                 | reserved              |
|             |                                                    |                            |                    | 0x 4001 4000                 | ADC3                  |
|             |                                                    |                            |                    | 0x 4001 3C00                 |                       |
|             |                                                    |                            |                    | 0x 4001 3800                 | USART1                |
|             |                                                    |                            |                    | 0x 4001 3400                 | TM8                   |
|             |                                                    |                            |                    | 0x 4001 3000                 | SPI1                  |
|             |                                                    |                            |                    | 0x 4001 2C00                 | TM1                   |
|             |                                                    |                            |                    | 0x 4001 2800                 | ADC2                  |
|             |                                                    |                            |                    | 0x 4001 2400                 | ADC1                  |
|             |                                                    |                            |                    | 0x 4001 2000                 | NA                    |
|             |                                                    |                            |                    | 0x 4001 1C00                 | NA                    |
|             |                                                    |                            |                    | 0x 4001 1800                 | Port E                |
|             |                                                    |                            |                    | 0x 4001 1400                 | Port D                |
|             |                                                    | 0xFFFF FFFF                |                    | 0x 4001 1000                 | Port C                |
|             |                                                    |                            | Cortex-M3 Internal | 0x 4001 0C00                 | Port B                |
|             |                                                    | 7                          | Peripherals        | 0x 4001 0800                 | Port A                |
|             |                                                    | 0xE010 0000-               |                    | 0x 4001 0400                 | EXTI                  |
| 0x1FFF FFFF | reserved                                           | 0xE000 0000                |                    | 0x 4001 0000                 | AFIO                  |
| 0x1FFF F80F | Option                                             |                            |                    | 0x 4000 7800                 | reserved              |
|             | Bytes                                              | 6                          |                    | 0x 4000 7400                 | DAC                   |
| 0x1FFF F800 | - Dyico                                            |                            | reserved           | 0x 4000 7000                 | PWR                   |
|             |                                                    | 0xC000 0000                |                    | 0x 4000 6C00                 | BKP                   |
|             | System                                             |                            |                    | 0x 4000 6800                 | reserved              |
|             | memory                                             |                            |                    | 0x 4000 6400                 | bxCAN                 |
|             | momory                                             | 5                          | EXMC register      |                              | shared 512 byte       |
| 0x1FFF F000 |                                                    | 0xA000 1000                |                    | 0x 4000 6000                 | USB/CAN SRAM          |
| 0.000       |                                                    | 0xA000 0000                |                    | 0x 4000 5C00                 | USB Registers<br>I2C2 |
|             |                                                    |                            |                    | 0x 4000 5800                 | I2C2                  |
|             |                                                    | 4                          | reserved           | 0x 4000 5400                 | NA NA                 |
|             |                                                    |                            | reserveu           | 0x 4000 5000                 |                       |
|             |                                                    |                            | E)/1101            | 0x 4000 4C00                 | NA<br>LICADTO         |
| I           | reserved                                           | 0x8000 0000                | EXMC bank          | 0x 4000 4800                 | USART3                |
| I           |                                                    | ]                          |                    | 0x 4000 4400                 | USART2                |
| I           |                                                    | 3                          | reserved           | 0x 4000 4000                 | reserved              |
| I           |                                                    | 00000 0000                 |                    | 0x 4000 3C00                 | NA<br>CDI2//202       |
| I           |                                                    | 0x6000 0000                |                    | 0x 4000 3800                 | SPI2/I2S2             |
|             |                                                    |                            |                    | 0x 4000 3400                 | reserved              |
| I           |                                                    | 2                          | reserved           | 0x 4000 3000                 | IWDG                  |
| I           |                                                    | _                          |                    | 0x 4000 2C00                 | WWDG                  |
| 0x0830 0000 |                                                    | 0x4000 0000                | Peripherals        | 0x 4000 2800                 |                       |
| 2,0000 0000 | Flash memory                                       |                            |                    | 0x 4000 2400                 | RTC                   |
| 0,0000 0000 | bank 2 (2560KB)                                    | 4                          | reserved           | 0x 4000 2000                 | reserved              |
| 0x0808 0000 | Flash memory                                       | 1<br>0x2001 8000           |                    | 0x 4000 1C00                 | TM4                   |
| 0x0802 0000 | bank 1 (512KB)                                     | 0x2001 8000<br>0x2000 0000 | SRAM (96KB)        | 0x 4000 1800                 | TM3                   |
| 0x0800 0000 | Flash Memory                                       | UX2000 0000                | SKAIVI (90KB)      | 0x 4000 1400                 | TM2                   |
| I           | reserved                                           |                            |                    | 0x 4000 1000                 |                       |
| I           | Aliased to Flash or                                | <b>→</b> 0                 | reserved           | 0x 4000 0C00<br>0x 4000 0800 | TM1                   |
|             |                                                    |                            |                    |                              | 1                     |
|             | system memory according to BOOT                    |                            |                    |                              |                       |
|             | system memory according to BOOT pins configuration | 0x0000 0000                |                    | 0x 4000 0400<br>0x 4000 0000 |                       |

## 2.5 64 Pin definition

Table 2. X32F1003xx 64 pin definition

| Pin<br>number | Pins                    | Туре | function    | Default                                                                                                                  | Alternate |
|---------------|-------------------------|------|-------------|--------------------------------------------------------------------------------------------------------------------------|-----------|
| 1             | VBAT                    | S    | VBAT        |                                                                                                                          |           |
| 2             | PC13-<br>TAMPE<br>R-RTC | I/O  | PC13        | TAMPER-RTC                                                                                                               |           |
| 3             | PC14-<br>OSC32_<br>IN   | I/O  | PC14        | OSC32_IN                                                                                                                 |           |
| 4             | PC15-<br>OSC32_OUT      | I/O  | PC15        | OSC32_OUT                                                                                                                |           |
| 5             | OSC_IN                  | I    | OSC_IN      | PD0                                                                                                                      | CAN_RX    |
| 6             | OSC_OUT                 | 0    | OSC_OU<br>T | PD1                                                                                                                      | CAN_TX    |
| 7             | NRST                    | I/O  | NRST        |                                                                                                                          |           |
| 8             | PC0                     | I/O  | PC0         | ADC2_IN2                                                                                                                 |           |
| 9             | PC1                     | I/O  | PC1         | ADC2_IN3                                                                                                                 |           |
| 10            | PC2                     | I/O  | PC2         | ADC2_IN4                                                                                                                 |           |
| 11            | PC3                     | I/O  | PC3         | ADC2_IN5                                                                                                                 |           |
| 12            | VSSA                    | S    | VSSA        |                                                                                                                          |           |
| 13            | VDDA                    | S    | VDDA        |                                                                                                                          |           |
| 14            | PA0-WKUP                | I/O  | PA0         | ADC1_IN0/COMP1_INP0/<br>COMP1_INM6/COMP2_IN<br>P0/<br>WKUP/UART2_CTS/<br>TIM2_CH1_ETR                                    |           |
| 15            | PA1                     | I/O  | PA1         | ADC1_IN1/COMP1_INP1/<br>COMP2_INP1/OPAMP1_I<br>NP1/<br>OPAMP1_INM1/OPAMP2_<br>INM3/<br>OPAMP3_INP2/OPAMP3_               |           |
| 16            | PA2                     | I/O  | PA2         | INM2/ UART2_RTS/TIM2_CH2  ADC1_IN2/COMP1_INP2/ COMP2_INP2/COMP2_IN  M6/ UART2_RX/TIM2_CH3                                |           |
| 17            | PA3                     | I/O  | PA3         | ADC1_IN3/COMP1_INP3/<br>COMP2_INP3/OPAMP1_I<br>NP2/<br>OPAMP1_INM2/OPAMP2_<br>INM2/<br>OPAMP3_INP0/<br>UART2_RX/TIM2_CH4 |           |

| 18 | VSS_4 | S   | VSS_4   |                                                                                                                                                                       |           |
|----|-------|-----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 19 | VDD_4 | S   | VDD_4   |                                                                                                                                                                       |           |
| 20 | PA4   | I/O | PA4     | ADC1_IN4/DAC1_OUT/ COMP1_INP4/COMP1_IN                                                                                                                                |           |
| 21 | PA5   | I/O | PA5     | ADC1_IN5/DAC2_OUT/ COMP1_INP5/COMP1_IN M5/ COMP2_INP5/COMP2_IN M5/ OPAMP1_INP1/OPAMP1_ INM1/ OPAMP2_INP0/OPAMP2_ INM1/ OPAMP3_INM0/OPAMP3_ INP1/ OPAMP4_INM1/SPI1_SCK |           |
| 22 | PA6   | I/O | PA6     | ADC1_IN6/COMP1_INP6/<br>COMP1_INM7/COMP2_IN<br>P6/<br>COMP2_INM7/OPAMP4_I<br>NM2/<br>SPI1_MISO/TIM3_CH1                                                               | TIM1_BKIN |
| 23 | PA7   | I/O | PA7     | ADC1_IN7/COMP1_INP7/<br>COMP2_INP7/OPAMP1_I<br>NP0/<br>OPAMP1_INM0/OPAMP4_<br>INM3/<br>SPI1_MOSI/TIM3_CH2                                                             | TIM1_CH1N |
| 24 | PC4   | I/O | PC4     | ADC2_IN6/OPAMP4_INP0                                                                                                                                                  |           |
| 25 | PC5   | I/O | PC5     | ADC2_IN7/OPAMP2_INM0                                                                                                                                                  |           |
| 26 | PB0   | I/O | PB0     | ADC2_IN0/OPAMP2_INP1<br>/<br>OPAMP3_INP3/OPAMP3_<br>INM3/<br>OPAMP4_INP2/<br>TIM3_CH3                                                                                 | TIM1_CH2N |
| 27 | PB1   | I/O | PB1     | ADC2_IN1/OPAMP2_INP2<br>/<br>OPAMP4_INP3/<br>TIM3_CH4                                                                                                                 | TIM1_CH3N |
| 28 | PB2   | I/O | PB2/BOO |                                                                                                                                                                       |           |

|    |       | I   | T1             |                                         |                                    |
|----|-------|-----|----------------|-----------------------------------------|------------------------------------|
| 29 | PB10  | I/O | PB10           | I2C2_SCL/UART3_TX/                      | TIM2_CH3                           |
|    |       |     |                |                                         |                                    |
| 30 | PB11  | I/O | PB11           | I2C2_SDA/UART3_RX                       | TIM2_CH4                           |
| 00 |       |     |                | 1202_05/05/11(10_10(                    | 11WIZ_0114                         |
| 31 | VSS_1 | S   | VSS_1          |                                         |                                    |
| 32 | VDD_1 | S   | VDD_1          |                                         |                                    |
| 33 | PB12  | I/O | PB12           | SPI2_NSS/TIM1_BKIN/                     |                                    |
| 34 | PB13  | I/O | PB13           | SPI2_SCK/UART3_CTS/<br>TIM1_CH1N        |                                    |
| 35 | PB14  | I/O | PB14           | SPI2_MISO/UART3_RTS/<br>TIM1_CH2N       |                                    |
| 36 | PB15  | I/O | PB15           | SPI2_MOSI/TIM1_CH3N/                    |                                    |
| 37 | PC6   | I/O | PC6            |                                         | TIM3_CH1                           |
| 38 | PC7   | I/O | PC7            |                                         | TIM3_CH2                           |
| 39 | PC8   | I/O | PC8            |                                         | TIM3_CH3                           |
| 40 | PC9   | I/O | PC9            |                                         | TIM3_CH4                           |
| 41 | PA8   | I/O | PA8            | TIM1_CH1/MCO                            |                                    |
| 42 | PA9   | I/O | PA9            | UART1_TX/TIM1_CH2                       |                                    |
| 43 | PA10  | I/O | PA10           | UART1_RX/TIM1_CH3/                      |                                    |
| 44 | PA11  | I/O | PA11           | UART1_CTS/USBDM/CAN<br>_RX/<br>TIM1_CH4 |                                    |
| 45 | PA12  | I/O | PA12           | UART1_RTS/USBDP/CAN<br>_TX/<br>TIM1_ETR |                                    |
| 46 | PA13  | I/O | JTMS/SW<br>DIO | _                                       | PA13                               |
| 47 | VSS_2 | S   | VSS_2          |                                         |                                    |
| 48 | VDD_2 | S   | VDD_2          |                                         |                                    |
| 49 | PA14  | I/O | JTCK/SW<br>CLK |                                         | PA14                               |
| 50 | PA15  | I/O | JTDI           |                                         | PA15/TIM2_C<br>H1_ETR/<br>SPI1_NSS |

| 51 | PC10  | I/O | PC10   |                    | UART3_TX                                   |
|----|-------|-----|--------|--------------------|--------------------------------------------|
| 52 | PC11  | I/O | PC11   |                    | UART3_RX                                   |
| 53 | PC12  | I/O | PC12   |                    |                                            |
| 54 | PD2   | I/O | PD2    | TIM3_ETR           |                                            |
| 55 | PB3   | I/O | JTDO   |                    | PB3/TRACES<br>WO/<br>TIM2_CH2/SPI<br>1_SCK |
| 56 | PB4   | I/O | NJTRST |                    | PB4/TIM3_CH<br>1/<br>SPI1_MISO             |
| 57 | PB5   | I/O | PB5    |                    | TIM3_CH2/SPI<br>1_MOSI                     |
| 58 | PB6   | I/O | PB6    | I2C1_SCL/TIM4_CH1/ | UART1_TX                                   |
| 59 | PB7   | I/O | PB7    | I2C_SDA/TIM4_CH2   | UART1_RX                                   |
| 60 | BOOT0 | I   | BOOT0  |                    |                                            |
| 61 | PB8   | I/O | PB8    | TIM4_CH3           | I2C1_SCL/CAN_RX                            |
| 62 | PB9   | I/O | PB9    | TIM4_CH4           | I2C1_SDA/CAN_TX                            |
| 63 | Vss_3 | S   | Vss_3  |                    |                                            |
| 64 | Vdd_3 | S   | Vdd_3  |                    |                                            |

## 3 Functional description

## 3.1 ARM<sup>®</sup> Cortex<sup>™</sup>-M3 core

The Cortex<sup>™</sup>-M3 processor is the latest generation of ARM<sup>®</sup> processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

- 32-bit ARM<sup>®</sup> Cortex<sup>™</sup>-M3 processor core
- Up to 72 MHz operation frequency
- Single-cycle multiplication and hardware divider
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer

The Cortex<sup>™</sup>-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex<sup>™</sup>-M3:

- Internal Bus Matrix connected with ICode bus, DCode bus, system bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP)
- Nested Vectored Interrupt Controller (NVIC)
- Flash Patch and Breakpoint (FPB)
- Data Watchpoint and Trace (DWT)
- Instrument Trace Macrocell (ITM)
- Memory Protection Unit (MPU)
- Serial Wire JTAG Debug Port (SWJ-DP)
- Trace Port Interface Unit (TPIU)

## 3.2 On-chip memory

- Up to 1024 Kbytes of Flash memory
- Up to 32 Kbytes of SRAM

The ARM<sup>®</sup> Cortex <sup>™</sup>-M3 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 1024 Kbytes of inner Flash and 32 Kbytes of inner SRAM at most is available for storing programs and data, both accessed (R/W) at CPU clock speed with zero wait states. The Figure 6. X32F1003xx memory map shows the memory map of the X32F1003xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

#### 3.3 Clock, reset and supply management

- Internal 8 MHz factory-trimmed RC and external 4 to 16 MHz crystal oscillator
- Internal 40 KHz RC calibrated oscillator and external 32 KHz crystal oscillator
- Integrated system clock PLL
- 2.5 to 5.0 V application supply and I/Os
- Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)

The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the high-speed APB domains is 72 MHz. See Figure 7 for details on the clock tree.

The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from/down to 2.5 V.

The device remains in reset mode when  $V_{DD}$  is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.

#### Power supply schemes:

- V<sub>DD</sub> range: 2.5 to 5V, external power supply for I/Os and the internal regulator. Provided externally through V<sub>DD</sub> pins.
- V<sub>SSA</sub>, V<sub>DDA</sub> range: 2.5 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. V<sub>DDA</sub> and V<sub>SSA</sub> must be connected to V<sub>DD</sub> and V<sub>SS</sub>, respectively.
- V<sub>BAT</sub> range: 2.5 to 3.6 V, power supply for RTC, external clock 32.768 kHz oscillator and backup registers (through power switch) when V<sub>DD</sub> is not present.

#### 3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from main flash memory (default)
- Boot from system memory
- Boot from on-chip SRAM

The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART1 in device mode. It also can be used to transfer and update the Flash memory code, the data and the vector table sections. In default condition, boot from bank 1 of Flash memory is selected. It also supports to boot from bank 2 of Flash memory by setting a bit in option bytes.

#### 3.5 Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are Sleep mode, Deep-sleep mode, and Standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.

#### ■ Sleep mode

In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.

#### ■ **Deep-sleep** mode

In Deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (HSI, HSE) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the Deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output, and USB wakeup. When exiting the Deep-sleep mode, the HSI is selected as the system clock.

#### ■ Standby mode

In Standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of HSI, HSE and PLL are disabled. The contents of SRAM and registers (except Backup Registers) are lost. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm, the IWDG reset, and the rising edge on WKUP pin.

#### 3.6 Analog to digital converter (ADC)

- 12-bit SAR ADC engine
- Up to 1 MSPS conversion rate
- Conversion range: V<sub>SSA</sub> to V<sub>DDA</sub> (0 to 1.2 V)
- Temperature sensor

Up to three 12-bit 1 µs multi-channel ADCs are integrated in the device. Each is a total of up to 21 multiplexed external channels. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block of analog inputs also can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced usages.

The ADCs can be triggered from the events generated by the general-purpose timers (TMx) and the advanced-control timers (TM1) with internal connection. The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 0 V to 1.2 V. The temperature sensor is internally connected to the ADC\_IN16 input channel which is used to convert the sensor output voltage into a digital value.

#### 3.7 Digital to analog converter (DAC)

- 12-bit DAC converters of independent output channel
- 12-bit mode in conjunction with the DMA controller

The 12-bit buffered DAC channels are used to generate variable analog outputs. The DACs are designed with integrated resistor strings structure. The DAC channels can be triggered by the timer update outputs or EXTI with DMA support. The maximum output value of the DAC is  $V_{REF+}$ .

#### 3.8 DMA

- 7 channel DMA 1 controller and 5 channel DMA 2 controller
- Peripherals supported: Timers, ADC, SPIs, I<sup>2</sup>Cs, USARTs and DAC

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Four types of access method are supported: peripheral to peripheral, peripheral to memory, memory to peripheral, memory to memory

Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

#### 3.9 General-purpose inputs/outputs (GPIOs)

- Up to 40 fast GPIOs, all mappable on 16 external interrupt vectors (EXTI)
- Analog input/output configurable
- Alternate function input/output configurable

There are up to 40 general purpose I/O pins (GPIO) in X32F1003xx, named PA0 ~ PA15 and PB0 ~ PB15, PC0 ~ PC12, to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or opendrain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

#### 3.10 Timers and PWM generation

- One 16-bit advanced-control timer (TM1)
- Up to 4 independent channels of PWM, output compare or input capture for each GPTM and external trigger input
- 16-bit, motor control PWM advanced-control timer with programmable dead-time generation for output match
- Encoder interface controller with two inputs using quadrature decoder
- 24-bit SysTick timer down counter
- 2 watchdog timers (Independent watchdog and window watchdog)

The advanced-control timer (TM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general-purpose timer. The 4 independent channels can be used for

- Input capture
- Output compare
- PWM generation (edge- or center-aligned counting modes)
- Single pulse mode output

If configured as a general-purpose 16-bit timer, it has the same functions as the TMx timer. It can be synchronized with external signals or to interconnect with other GPTMs together which have the same architecture and features.

The general-purpose timer (GPTM), known as TM2 ~ TM5 can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. The GPTM also supports an encoder interface with two inputs using quadrature decoder.

The basic timer, known as TM6 is mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.

The X32F1003xx have two watchdog peripherals, Independent watchdog and window watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy.

The independent watchdog timer includes a 12-bit down-counting counter and a 8-bit prescaler, It is clocked from an independent 40 kHz internal RC and as it operates independently of the main clock, it can operate in stop and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.

The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in

debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Auto reload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

#### 3.11 Real time clock (RTC)

- 32-bit up-counter with a programmable 20-bit prescaler
- Alarm function
- Interrupt and wake-up event

The real time clock is an independent timer which provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and an expected interrupt. The RTC features a 32-bit programmable counter for long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz from external crystal oscillator.

#### 3.12 Inter-integrated circuit (I2C)

- Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 400 kHz
- Provide arbitration function, optional PEC (packet error checking) generation and checking

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides two data transfer rates: 100 kHz of standard mode, 400 kHz of the fast mode. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time.

#### 3.13 Serial peripheral interface (SPI)

- Up to two SPI interfaces with a frequency of up to 18 MHz
- Support both master and slave mode
- Hardware CRC calculation and transmit automatic CRC error checking

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking.

# 3.14 Universal synchronous asynchronous receiver transmitter (USART)

- Up to three USARTs
- Supports both asynchronous and clocked synchronous serial communication modes

The USART(USART1, USART2 and USART3) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver.

## 3.15 Universal serial bus full-speed (USB 2.0 FS)

- One full-speed USB Interface with frequency from 1.5Mbit/s to 12 Mbit/s
- Internal main PLL for USB CLK compliantly

The Universal Serial Bus (USB) is a 4-wire bus that supports communication between one or more devices. Full-speed peripheral is compliant with the USB 2.0 specification. The device controller enables 12 Mbit/s data exchange with a USB Host controller. Transaction formatting is performed by the hardware, including CRC generation and checking. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator) and the operating frequency divided from APB1 should be 12 MHz above.

#### 3.16 Controller area network (CAN)

- One CAN2.0B interface with communication frequency up to 1 Mbit/s
- Internal main PLL for USB CLK compliantly

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 14 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others.

#### 3.17 Debug mode

Serial wire JTAG debug port (SWJ-DP)

The ARM<sup>®</sup> SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

#### 3.18 Package and operation temperature

- LQFP64 (X32F1003 Rx), LQFP48 (X32F1003 Cx)
- Operation temperature range: -40°C to +85°C (industrial level)

#### 4 Electrical characteristics

## 4.1 Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 3. Absolute maximum ratings

| Symbol | Parameter                        | Min        | Max                   | Unit |
|--------|----------------------------------|------------|-----------------------|------|
| VDD    | External voltage range           | Vss - 0.3  | Vss + 3.6             | V    |
| VDDA   | External analog supply voltage   | Vssa - 0.3 | Vssa + 3.6            | V    |
| VBAT   | External battery supply voltage  | Vss - 0.3  | Vss + 3.6             | V    |
| Vin    | Input voltage on 5V tolerant pin | Vss - 0.3  | Vss + 5               | V    |
| VIN    | Input voltage on other I/O       | Vss - 0.3  | V <sub>DD</sub> + 0.3 | V    |
| lio    | Maximum current for GPIO pins    | _          | 25                    | mA   |
| TA     | Operating temperature range      | -40        | +85                   | °C   |
| Тѕтс   | Storage temperature range        | -55        | +150                  | °C   |
| TJ     | Maximum junction temperature     | _          | 125                   | °C   |

#### 4.2 Recommended DC characteristics

Table 3. DC operating conditions

| Symbol           | Parameter              | Conditions              | Min | Тур | Max | Unit |
|------------------|------------------------|-------------------------|-----|-----|-----|------|
| V <sub>DD</sub>  | Supply voltage         | _                       | 2.6 | 3.3 | 3.6 | V    |
| V <sub>DDA</sub> | Analog supply voltage  | Same as V <sub>DD</sub> | 2.6 | 3.3 | 3.6 | V    |
| VBAT             | Battery supply voltage | _                       | 1.8 |     | 3.6 | V    |

## 4.3 Power consumption

The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications.

**Table 4. Power consumption characteristics** 

| Symbol | Parameter                              | Conditions                                                                                            | Min | Тур  | Max | Unit   |
|--------|----------------------------------------|-------------------------------------------------------------------------------------------------------|-----|------|-----|--------|
|        |                                        | V <sub>DD</sub> =V <sub>BAT</sub> =3.3V, HSE=8MHz, System clock=108 MHz, All peripherals enabled      | _   | 45.2 | _   | mA     |
|        | Supply current                         | V <sub>DD</sub> =V <sub>BAT</sub> =3.3V, HSE=8MHz, System clock<br>=108 MHz, All peripherals disabled | _   | 36.0 | _   | mA     |
| loo    | (Run mode)                             | VDD=VBAT=3.3V, HSE=8MHz, System clock =72MHz, All peripherals enabled                                 |     | 32.4 | _   | mA     |
|        |                                        | VDD=VBAT=3.3V, HSE=8MHz, System Clock =72 MHz, All peripherals disabled                               | 1   | 26.1 | 1   | mA     |
| loo    | Supply current                         | V <sub>DD</sub> =V <sub>BAT</sub> =3.3V, HSE=8MHz, CPU clock off, All peripherals enabled             |     | 23.2 | l   | mA     |
|        | (Sleep mode)                           | V <sub>DD</sub> =V <sub>BAT</sub> =3.3V, HSE=8MHz, CPU clock off, All peripherals disabled            |     | 13.9 | l   | mA     |
|        | Supply current<br>(Deep-Sleep<br>mode) | V <sub>DD</sub> =V <sub>BAT</sub> =3.3V, All clock off, LSI on, RTC on, All GPIOs analog mode         |     | 0.91 | 1.4 | mA     |
|        | Supply current (Standby mode)          | VDD=VBAT=3.3V, LDO off, LSE off, LSI on, RTC on                                                       |     | 24.5 |     | μΑ     |
| Іват   | Battery supply                         | VDD not available, VBAT=3.3V, LDO off, LSE on, LSI off, RTC on                                        | _   | 13.1 | _   | μΑ     |
| IBAI   |                                        | VDD not available, VBAT=3.3 V, LDO off, LSE off, LSI on, RTC on                                       | _   | 10.8 | _   | M<br>A |

## 4.4 External clock characteristics

Table5. High speed external clock (HSE) characteristics

| Symbol | Parameter                                          | Conditions                                  | Min | Тур | Max | Unit |
|--------|----------------------------------------------------|---------------------------------------------|-----|-----|-----|------|
| fHSE   | High Speed External oscillator (HSE) frequency     | V <sub>DD</sub> =3.3V                       | 4   | 8   | 16  | MHz  |
| CHSE   | Recommended load capacitance on OSC_IN and OSC_OUT |                                             | _   | 20  | 30  | pF   |
| DHSE   | HSE oscillator duty cycle                          |                                             | 48  | 50  | 52  | %    |
| IDDHSE | HSE oscillator operating current                   | V <sub>DD</sub> =3.3V, T <sub>A</sub> =25°C | _   | 1.4 |     | μΑ   |
| tsunse | HSE oscillator startup time                        | V <sub>DD</sub> =3.3V, T <sub>A</sub> =25°C | _   | 2   | _   | ms   |

Table 6. Low speed external clock (LSE) characteristics

| Symbol | Parameter                                              | Conditions                              | Min | Тур    | Max  | Unit |
|--------|--------------------------------------------------------|-----------------------------------------|-----|--------|------|------|
| fLSE   | Low Speed External oscillator (LSE) frequency          | V <sub>DD</sub> =V <sub>BAT</sub> =3.3V | ı   | 32.768 | 1000 | KHz  |
| CLSE   | Recommended load capacitance on OSC32_IN and OSC32_OUT |                                         | I   |        | 15   | pF   |
| DLSE   | LSE oscillator duty cycle                              |                                         | 48  | 50     | 52   | %    |
| Iddlse | LSE oscillator operating current                       | V <sub>DD</sub> =V <sub>BAT</sub> =3.3V |     | 1.4    |      | μΑ   |
| tsulse | LSE oscillator startup time                            | VDD=VBAT=3.3V                           |     | 3      |      | s    |

#### 4.5 Internal clock characteristics

Table 7. High speed internal clock (HSI) characteristics

| Symbol | Parameter                   | Conditions                                          | Min      | Тур | Max | Unit   |   |
|--------|-----------------------------|-----------------------------------------------------|----------|-----|-----|--------|---|
| fHSI   | High Speed Internal         | V <sub>DD</sub> =3.3V, T <sub>A</sub> =-40°C ~+85°C |          | 8   |     | MHz    |   |
| IHSI   | Oscillator (HSI) frequency  | VDD-3.3V, TA40 C ~+65 C                             |          | 0   |     | IVIITZ |   |
| A C C  | HSI oscillator Frequency    | Factory-trimmed                                     |          |     |     | -1     | % |
| ACCHSI | accuracy VDD=3.3V, TA=25°C  |                                                     | +1       |     |     | 70     |   |
| Dhsi   | HSI oscillator duty cycle   | VDD=3.3V, fHSI=8MHz                                 | 48       | 50  | 52  | %      |   |
|        | HSI oscillator operating    | V 0.0V 5 0MIL-                                      |          | 0.0 | 400 |        |   |
| Iddhsi | current                     | V <sub>DD</sub> =3.3V, f <sub>HSI</sub> =8MHz       | MHz — 80 |     | 100 | μΑ     |   |
| tsunsi | HSI oscillator startup time | VDD=3.3V, fHSI=8MHz                                 | 1        | _   | 2   | us     |   |

Table 13. Low speed internal clock (LSI) characteristics

| Symbol | Parameter                                     | Conditions             | Min | Тур | Max | Unit |
|--------|-----------------------------------------------|------------------------|-----|-----|-----|------|
| fLSI   | Low Speed Internal oscillator (LSI) frequency | 30   40                |     | 40  | 60  | KHz  |
| Iddlsi | LSI oscillator operating current              | VDD=VBAT=3.3V, TA=25°C | _   | 1   | 2   | μΑ   |
| tsulsi | LSI oscillator startup time                   | VDD=VBAT=3.3V, TA=25°C | _   | _   | 80  | μs   |

#### 4.6 PLL characteristics

Table 8. PLL characteristics

| Symbol | Parameter                  | Conditions | Min | Тур | Max | Unit |
|--------|----------------------------|------------|-----|-----|-----|------|
| fpllin | PLL input clock frequency  |            | 1   | 8   | 25  | MHz  |
| fpll   | PLL output clock frequency |            | 16  | _   | 72  | MHz  |
| tLOCK  | PLL lock time              |            | I   |     | 100 | μs   |

## 4.7 Memory characteristics

Table 9. Flash memory characteristics

| Symbol          | Parameter                                                             | Conditions                                         | Min | Тур | Max | Unit    |
|-----------------|-----------------------------------------------------------------------|----------------------------------------------------|-----|-----|-----|---------|
| PEcyc           | Number of guaranteed program /erase cycles before failure (Endurance) | rogram /erase cycles T <sub>A</sub> =-40°C ~ +85°C |     |     | _   | kcycles |
| <b>t</b> RET    | Data retention time                                                   | T <sub>A</sub> =125°C                              | 20  | -   | _   | years   |
| tprog           | Word programming time                                                 | T <sub>A</sub> =-40°C ~ +85°C                      | 200 |     | 400 | Us      |
| terase          | Page erase time                                                       | T <sub>A</sub> =-40°C ~ +85°C                      | 60  | 100 | 450 | Ms      |
| <b>t</b> MERASE | Mass erase time                                                       | T <sub>A</sub> =-40°C ~ +85°C                      | 3.2 | _   | 9.6 | S       |

## 4.8 **GPIO** characteristics

Table 10. I/O port characteristics

| Symbol | Parameter                   | Conditions                       |      | Тур | Max | Unit |
|--------|-----------------------------|----------------------------------|------|-----|-----|------|
| VIL    | Low level input voltage     | V <sub>DD</sub> =2.6V            | -0.3 | _   | 0.9 | ٧    |
| VIH    | High level input voltage    | V <sub>DD</sub> =2.6V            | 1    | _   | 5.5 | V    |
| Vol    | Low level output voltage    | V <sub>DD</sub> =2.6V            | _    | _   | 0.2 | V    |
| Vон    | High level output voltage   | V <sub>DD</sub> =2.6V            | 2.3  | _   | _   | V    |
| Rpu    | Internal pull-up resistor   | V <sub>IN</sub> =V <sub>SS</sub> | 30   | 40  | 50  | kΩ   |
| Rpd    | Internal pull-down resistor | V <sub>IN</sub> =V <sub>DD</sub> | 30   | 40  | 50  | kΩ   |

## 4.9 ADC characteristics

**Table 11. ADC characteristics** 

| Symbol      | Parameter                        | Conditions             | Min | Тур | Max               | Unit |
|-------------|----------------------------------|------------------------|-----|-----|-------------------|------|
| VDDA        | Operating voltage                |                        | 2.6 | 3.3 | 3.6               | ٧    |
| VADCIN      | ADC input voltage range          |                        | 0   | _   | V <sub>REF+</sub> | V    |
| fadc        | ADC clock                        |                        | 0.6 | _   | 14                | MHz  |
| fs          | Sampling rate                    |                        | _   | _   | 1                 | MHz  |
| fadcconv    | ADC conversion time              | fadc=14MHz             | 1   | _   | 18                | μs   |
| Radc        | Input sampling switch resistance |                        | _   | _   | 1                 | kΩ   |
|             |                                  | No pin/pad capacitance |     |     |                   |      |
| CADC        | Input sampling capacitance       | included               | _   | 32  | _                 | pF   |
| <b>t</b> su | Startup time                     |                        | _   | _   | 1                 | μs   |

#### 4.10 DAC characteristics

**Table 12. DAC characteristics** 

| Symbol | Parameter                        | Conditions                               | Min | Тур | Max               | Unit     |
|--------|----------------------------------|------------------------------------------|-----|-----|-------------------|----------|
| VDDA   | Operating voltage                |                                          | 2.6 | 3.3 | 3.6               | ٧        |
| VDACIN | DAC input voltage range          |                                          | 0   | _   | V <sub>REF+</sub> | <b>V</b> |
| RLOAD  | Load resistance                  | Resistive load vs. Vssa with buffer ON   | 5   | _   |                   | kΩ       |
| CLOAD  | Load capacitance                 | No pin/pad capacitance included          | _   | _   | 50                | pF       |
| DNE    | Differential non-linearity error | DAC in 12-bit                            | 1   | _   | ±3                | LSB      |
| INL    | Integral non-linearity           | DAC in 12-bit                            | -   | _   | ±5                | LSB      |
| Offset | Offset error                     | DAC in 12-bit, V <sub>REF+</sub> = 3.6 V | _   | _   | ±12               | LSB      |
| GE     | Gain error                       | DAC in 12-bit                            | _   | _   | $\pm 0.5$         | %        |

## 4.11 I2C characteristics

Table 13. I2C characteristics

|         | - ,                 |            | Standar | d mode | Fast r | node |      |
|---------|---------------------|------------|---------|--------|--------|------|------|
| Symbol  | Parameter           | Conditions | Min     | Max    | Min    | Max  | Unit |
| fscL    | SCL clock frequency |            | 0       | 100    | 0      | 400  | KHz  |
| tscl(H) | SCL clock high time |            | 4.0     | _      | 0.6    | _    | ns   |
| tscl(L) | SCL clock low time  |            | 4.7     | _      | 1.3    | _    | ns   |

## 4.12 SPI characteristics

**Table 14. SPI characteristics** 

| Symbol             | Parameter                | Conditions  | Min | Тур | Max | Unit |
|--------------------|--------------------------|-------------|-----|-----|-----|------|
| fsck               | SCK clock frequency      |             | _   | _   | 18  | MHz  |
| tsck(H)            | SCK clock high time      |             | 19  | _   | _   | ns   |
| tsck(L)            | SCK clock low time       |             | 19  | _   |     | ns   |
| SPI master         | r mode                   |             |     |     |     |      |
| tv(MO)             | Data output valid time   |             | _   | _   | 25  | ns   |
| t <sub>H(MO)</sub> | Data output hold time    |             | 2   | _   | _   | ns   |
| tsu(MI)            | Data input setup time    |             | 5   | _   | _   | ns   |
| t <sub>H(MI)</sub> | Data input hold time     |             | 5   | _   | _   | ns   |
| SPI slave r        | mode                     |             |     |     |     |      |
| tsu(NSS)           | NSS enable setup time    | fpclk=54MHz | 74  | _   | _   | ns   |
| th(NSS)            | NSS enable hold time     | fpclk=54MHz | 37  | _   | _   | ns   |
| ta(so)             | Data output access time  | fpclk=54MHz | 0   | _   | 55  | ns   |
| tdis(so)           | Data output disable time |             | 3   | _   | 10  | ns   |
| tv(so)             | Data output valid time   |             | _   | _   | 25  | ns   |
| th(so)             | Data output hold time    |             | 15  | _   | _   | ns   |
| tsu(sı)            | Data input setup time    |             | 5   |     |     | ns   |
| <b>t</b> H(SI)     | Data input hold time     |             | 4   |     | _   | ns   |

# 5 Package information

# 5.1 LQFP package outline dimensions

Figure 5. LQFP package outline

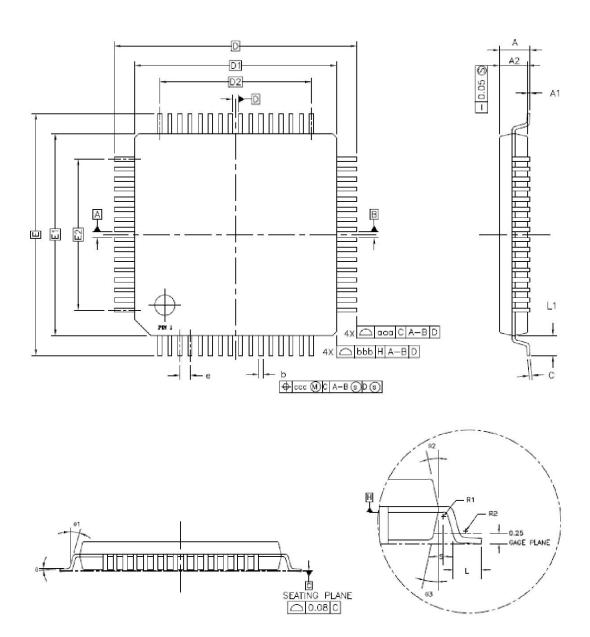



Table 15. LQFP package dimensions

| Table 10. Est 1 package difficultions |      |        |      |           |        |      |  |
|---------------------------------------|------|--------|------|-----------|--------|------|--|
| Symbol                                |      | LQFP48 |      |           | LQFP64 |      |  |
| Symbol                                | Min  | Тур    | Max  | Min       | Тур    | Max  |  |
| Α                                     | -    | -      | 1.20 | -         | -      | 1.60 |  |
| A1                                    | 0.05 | ı      | 0.15 | 0.05      | -      | 0.15 |  |
| A2                                    | 0.95 | 1.00   | 1.05 | 1.35      | 1.40   | 1.45 |  |
| D                                     | -    | 9.00   | ı    | -         | 12.00  | ı    |  |
| D1                                    | -    | 7.00   | ı    | -         | 10.00  | ı    |  |
| E                                     | -    | 9.00   | ı    | -         | 12.00  | ı    |  |
| E1                                    | -    | 7.00   | ı    | -         | 10.00  | -    |  |
| R1                                    | 0.08 | -      | ı    | 0.08      | -      | -    |  |
| R2                                    | 0.08 | -      | 0.20 | 0.08      | -      | 0.20 |  |
| θ                                     | 0°   | 3.5°   | 7°   | 0°        | 3.5°   | 7°   |  |
| θ1                                    | 0°   | -      | -    | 0°        | -      | -    |  |
| θ2                                    | 11°  | 12°    | 13°  | 11°       | 12°    | 13°  |  |
| θ3                                    | 11°  | 12°    | 13°  | 11°       | 12°    | 13°  |  |
| С                                     | 0.09 | -      | 0.20 | 0.09      | -      | 0.20 |  |
| L                                     | 0.45 | 0.60   | 0.75 | 0.45      | 0.60   | 0.75 |  |
| L1                                    | -    | 1.00   | -    | -         | 1.00   | -    |  |
| S                                     | 0.20 | -      | -    | 0.20      | -      | -    |  |
| b                                     | 0.17 | 0.22   | 0.27 | 0.17      | 0.20   | 0.27 |  |
| е                                     | -    | 0.50   | -    | -         | 0.50   | -    |  |
| D2                                    | -    | 17.50  | -    | -         | 17.50  | -    |  |
| E2                                    | -    | 17.50  | ı    | - 17.50 - |        |      |  |
| aaa                                   |      | 0.20   |      | 0.20      |        |      |  |
| bbb                                   |      | 0.20   |      |           | 0.20   |      |  |
| CCC                                   |      | 0.08   |      | 0.08      |        |      |  |

(Original dimensions are in millmeters)

# Revision History

Table 16. Revision history

| Revision No. | Description              | Date         |
|--------------|--------------------------|--------------|
| 0.2          | Add characteristics part | Aug.28, 2015 |
|              |                          |              |